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1. SUMMARY

Our goal is to derive and investigate effective nu-
merical algorithms for the stabilization of flow
problems governed by the Navier Stokes equa-
tions around an unstable steady state solution w.

Linearizing the Navier Stokes equations for
the difference of w and the instationary solution
z, we obtain the so-called Oseen equations for
y = z−w. We want to minimize y by a boundary
feedback control. In particular, the control will
have a non-zero normal component.

Reformulating the equations allows us to ap-
ply Riccati theory and derive an algebraic Riccati
equation (ARE) from which we can calculate an
optimal control u.

For the numerical solution, we discretize the
system by a Galerkin finite element method. For
the solution of the ARE, we use a Newton-
based algorithm exploiting the structure of the
discretized operators.

2. THEORETICAL APPROACH

For the Oseen equations with a given stationary
solution w and the instationary solution y that we
want to stabilize, we can formulate an optimal
boundary control problem as follows:

inf{J(y, u) : (y, u) fulfill (1), u ∈ V 0,0(Σ)},

J(y, u) =
1
2

T∫
0

∫
Ω

|y|2 dx dt +
1
2

T∫
0

|u|2V 0(Γ)dt,

∂t y − 1
Re

∆y + (y · ∇)w + (w · ∇)y +∇p = 0,

div y = 0 in Q = Ω× (0, T ),

y = Mu on Σ = Γ× (0, T ),

y(0) = ζ in Ω.

(1)

M restricts the control u to a part of the bound-
ary, T > 0 can be finite or infinite, the divergence
free spaces

V 0(Γ) = {u ∈ L2(Γ) : div u = 0 in Ω,

< u · n, 1 >H−1/2(Γ),H1/2(Γ)= 0},

V 0,0(Σ) = L2(0, T ;V 0(Γ))

allow controls with a nonzero normal component.

Using the orthogonal Helmholtz projection

P : L2(Ω) → V 0
n (Ω),

V 0
n (Ω) = {u ∈ L2(Ω) : div u = 0 in Ω, u·n = 0},

the Dirichlet operator DA defined by DAw = v

iff

λv − 1
Re

∆v + (w · ∇)v + (v · ∇)w +∇π = 0,

div v = 0 in Ω,

v = w on Γ,

and the boundary projectors

γnu = (u · n)n, γτu = u− γnu,

in (5) Raymond derives the equivalent problem

inf{I(y, u) : (y, u) fulfill (2), u ∈ V 0,0(Σ)},



I(y, u) =
1
2

T∫
0

(|Py|2L2(Ω) + |R1/2
A γnu|2V 0(Γ)

+ |γτu|2V 0(Γ)) dt,

Py′ = APy + BMu in (0,∞),

Py(0) = ζ,

(I − P )y = (I − P )DAMγnu,

(2)

where

Ay =
1

Re
P∆y − P ((w · ∇)y)− P ((y · ∇)w),

B = (λI −A)PDA and
RA = MD?

A(I − P )DAM + I.

To this problem, we can apply Riccati optimal
control theory. We solve the ARE

A?Π + ΠA−ΠBτM
2B?

τΠ

+ ΠBnMR−1
A MB?

nΠ + I = 0

for Π = Π? ≥ 0, define the feedback control

u = −MB?
τΠPy −R−1

A MB?
nΠPy

and get the stabilized solution from (2).

This theory can be extended to the fully non-
linear equation with the additional term (y ·∇)y,
and the stabilization can even be made exponen-
tial such that, if the initial perturbation y(0) = ζ

is small enough,

∃ C, ω > 0 : ||y(t)|| ≤ C e−ωt.

3. NUMERICAL REALIZATION

We will demonstrate the Riccati-based approach
for a standard benchmark problem in flow con-
trol: the backward facing step. Here the goal
is to minimize the vorticity behind the step by
applying a Dirichlet boundary control.

We are going to use the Taylor-Hood finite el-
ement Galerkin space discretization from which
we will get n-dimensional approximations of the
state equations and the ARE.

Solving the ARE is a numerical challenge due
to the size of the solution matrix Πh ∈ IRn×n.
We are going to use a low-rank Cholesky approx-
imation Π ≈ ZhZT

h with Zh ∈ IRn×r, r � n,

and compute Zh by a variant of Newton’s method
for AREs. Our algorithms exploit the structure
of the coefficient matrices by alternating direc-
tion iteration methods such that the complexity
of each Newton step is reduced from O(n3) to
the complexity for solving the stationary Stokes
problem (3; 4).

For the solution of the differential equations,
we use the finite element based solver NAVIER
(2). It comprises coupling with energy and
species transport, phase change problems and
capillary free boundary conditions, for example.
There are versions for 2d and 3d.
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