Morrey Regularity and Continuity of Minimizers for Asymptotically Convex Integrals

Mikil Foss, Antonia Passarelli di Napoli and Anna Verde

Department of Mathematics, University of Nebraska-Lincoln, 203 Avery Hall, Lincoln, Nebraska, 68588-0130 USA (mfoss@math.unl.edu)

Dipartimento di Matematica "R. Caccioppoli", Universita di Napoli "Federico II", Via Cintia, 80126 Napoli, ` Italy (antonia.passarelli@unina.it)

Dipartimento di Matematica "R. Caccioppoli", Universita di Napoli "Federico II", Via Cintia, 80126 Napoli, ` Italy (anverde@unina.it)

Keywords: Morrey regularity, asymptotically convex, obstacle problems

1. Introduction

I will present some Morrey regularity results for minimizers of functionals with the general form

$$
\mathbf{u} \mapsto \int_{\Omega} g(\mathbf{x}, \mathbf{u}(\mathbf{x}), \nabla \mathbf{u}(\mathbf{x})) d\mathbf{x}, \quad (1)
$$

where Ω is an open, bounded subset of \mathbb{R}^n and $\mathbf{u} \in W^{1,1}(\Omega;\mathbb{R}^N)$, with $n, N \geq 1$. The primary property that I assume q possesses is that there is a $p \in (1, \infty)$ such that for each $\mathbf{x} \in \mathbb{R}^n$ and each $\mathbf{u} \in \mathbb{R}^N$, the function $\mathbf{F} \mapsto g(\mathbf{x}, \mathbf{u}, \mathbf{F})$ behaves like $\mathbf{F} \mapsto ||\mathbf{F}||^p$ whenever $||\mathbf{F}||$ is sufficiently large. Integrands with this property are called asymptotically convex.

To make things more precise, let us say that a function $g: \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times n} \to \mathbb{R}$ is \mathcal{C}^0 asymptotically convex if for each $\varepsilon > 0$ and each $({\bf x},{\bf u}) \in \Omega \times \mathbb{R}^N$, there exists a $\sigma_{\varepsilon}({\bf x},{\bf u}) < +\infty$ such that

$$
\left|g(\mathbf{x}, \mathbf{u}, \mathbf{F}) - \left(1 + \|\mathbf{F}\|^2\right)^{\frac{p}{2}}\right| < \varepsilon \|\mathbf{F}\|^p, \quad (\mathcal{C}^0 \text{-} \mathbf{A})
$$

whenever $\|\mathbf{F}\| > \sigma_{\varepsilon}(\mathbf{x}, \mathbf{u})$. If $g : \mathbb{R} \to \mathbb{R}$ is given by $g(F) := (1 + |F|^2)^{\frac{p}{2}} - |F|\chi_{\mathbb{Q}}$, where $\chi_{\mathbb{Q}}$ is the characteristic function for the set of rational numbers, then we see that g is C^0 -asymptotically convex with $\sigma_{\varepsilon} = \varepsilon^{-\frac{1}{p-1}}$, yet g is nowhere convex. Nevertheless, one can show that a C^0 asymptotically convex function does, in some sense, behave like a convex function at infinity. Our regularity results apply to a minimizer, provided one exists, for functionals of the general form (1), provided that g is C^0 -asymptotically convex and the function $(\mathbf{x}, \mathbf{u}) \mapsto \sigma_{\varepsilon}(\mathbf{x}, \mathbf{u})$ satisfies some growth and regularity conditions.

2. Statement of Result

The statements for the main results are given in terms of a generalized notion of an almost minimizer and are fairly technical, so I present an application which conveys an idea of the content of the main results while reducing the technicalities. In the following, I use $L^{p,\kappa}$ to denote a Morrey space and $\mathscr{L}^{p,\kappa}$ to denote a Companato space.

Theorem 1 *Let* $0 \leq \kappa \leq n$, $0 \leq s \leq r \leq +\infty$ *and* $1 < q < +\infty$ *be given. Let* $\alpha \in L^{1,\kappa}(\Omega)$ *be given. Suppose that there is a* $\lambda \geq 0$ *such that* $h: \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times n} \to \mathbb{R}$ satisfies

$$
|h(\mathbf{x}, \mathbf{u}, \mathbf{F})| \le \alpha(\mathbf{x}) + \lambda \|\mathbf{u}\|^r + \|\mathbf{F}\|^q,
$$

for each $(\mathbf{x}, \mathbf{u}, \mathbf{F}) \in \Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times n}$ *. Let* $\delta > 0$ and $p > \max\left\{q, \frac{nr}{n+r}\right\}$ be given. Define the $\emph{functional } J : W^{1,1}(\Omega;\mathbb{R}^N) \rightarrow \overline{\mathbb{R}} \emph{ by }$

$$
J[\mathbf{u}] := \int_{\Omega} \left\{ \delta \left(1 + \|\nabla \mathbf{u}(\mathbf{x})\|^2 \right)^{\frac{p}{2}} + h(\mathbf{x}, \mathbf{u}(\mathbf{x}), \nabla \mathbf{u}(\mathbf{x})) \right\} d\mathbf{x}.
$$

We have the following: If $\mathbf{u} \in W^{1,p}_{loc}(\Omega; \mathbb{R}^N)$ *is a local minimizer for J; i.e.* $J[\mathbf{u}] \leq$ $J[\mathbf{u} + \boldsymbol{\varphi}]$ *, for each* $\boldsymbol{\varphi} \in W^{1,p}(\Omega;\mathbb{R}^N)$ *with* $\text{supp}(\varphi) \subset \subset \Omega$; then ∇ **u** $\in L^{p,\kappa}_{\text{loc}}(\Omega;\mathbb{R}^{N\times n})$ *and* $\mathbf{u} \in \mathscr{L}_{loc}^{p,p+\kappa}(\Omega;\mathbb{R}^N)$ *.*

This result actually holds up to the boundary provided that $\partial\Omega$ and the boundary conditions are sufficiently smooth. It also holds for certain variational problems with sufficiently smooth obstacles. It is also possible to allow the coefficient δ to be a continuous function that is uniformly positive in Ω .

3. Conclusion

To conclude, I make a few comments about the implications of the above result to the broader endeavor of establishing a lower-order regularity theory for variational problems. Until recently, results for such a theory have been for the most part unavailable (see (2) for a discussion). As demonstrated by V. Šverák & X. Yan (3) , even if an integrand $h \in C^{\infty}(\mathbb{R}^{N \times n})$ is strictly convex and has a uniformly bounded Hessian, a minimizer for the functional $\mathbf{u} \mapsto \int_{\Omega} h(\nabla \mathbf{u}(\mathbf{x})) d\mathbf{x}$ can be unbounded at an interior point in Ω . Thus without additional assumptions on h , one can not expect everywhere regularity for a minimizer. In (1), M. Foss & G. Mingione showed that if $h \in C^0(\Omega \times \mathbb{R}^N \times \mathbb{R}^{N \times n})$ is quasiconvex and possesses some additional growth and continuity properties with respect to its third argument, then a minimizer for the functional

$$
\mathbf{u} \mapsto \int_{\Omega} h(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}(\mathbf{x})) d\mathbf{x} \tag{2}
$$

is partially continuous; i.e. continuous on an open subset of Ω with full measure. Since $\mathscr{L}^{p,p+\kappa} \subset \mathcal{C}^{0,1-\frac{n-\kappa}{p}}$ whenever $p+\kappa > n$, Theorem 1 shows that for each $\delta > 0$ minimizers for the functional

$$
\mathbf{u} \mapsto \int_{\Omega} \left\{ \delta \left(1 + \|\nabla \mathbf{u}(\mathbf{x})\|^2 \right)^{\frac{p}{2}} + h(\mathbf{x}, \mathbf{u}(\mathbf{x}), \nabla \mathbf{u}(\mathbf{x})) \right\} d\mathbf{x} \quad (3)
$$

must be everywhere continuous, provided that $p > \max\left\{q, \frac{nr}{n+r}, n-\kappa\right\}$. This result only requires h to satisfy some very mild growth conditions. Thus $\delta \left(1 + \|\nabla u(\mathbf{x})\|^2\right)^{\frac{p}{2}}$ serves as a rather robust regularizing term. It would be interesting to discover if it is possible to obtain information about the lower-order regularity of a minimizer for the functional in (2) by approximating it using minimizers for functionals of the form (3) and the regularity provided by Theorem 1.

REFERENCES

[1] M. Foss and G. Mingione: Partial continuity for elliptic problems, preprint.

- [2] G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations. Applications of Mathematics **51** (2006), 355-425.
- [3] V. Šverák and X. Yan: Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA **99** (2002), 15269–15276.