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In many engineering disciplines, the use of
realistic computing models has become an in-
valuable tool in the design process. Complex
simulation codes are able to approximate the be-
havior of intricate systems or the properties of
components without the need for costly physical
experimentation. Optimization algorithms can be
used to automatically find the set of parameters
within the design space for which the simula-
tion promises the most desirable characteristics.
However, there are several challenges that must
be met to successfully apply this technique to
real-world problems.

First, the objective function to be minimized
(or maximized) is given only implicitly and a
time-consuming simulation is necessary to cal-
culate its value for a given set of parameters.
Thus, almost no assumptions can be made about
this function, which will often be highly non-
linear and multimodal. Furthermore, there are
usually a number of constraints that divide the
design space into feasible and infeasible regions
of unknown geometry. Derivate information is
typically not provided by the simulation codes,
and due to numerical noise, the objective func-
tion might also be non-smooth. These character-
istics make it very hard to apply some classical
methods such as gradient-based approaches. A
class of optimization algorithms that can be used
are so-called direct search methods (1).

Each solution candidate generated by the op-
timization algorithm must be evaluated, hence
necessitating the execution of a time-consuming
simulation. Despite the increase of computing
power, typical runtimes of a single simulation
still span from a few minutes to many hours.
This is caused by the demand for larger mod-
els, greater accuracy, and the adoption of coupled

multiscale and multiphysics simulation codes (2).
During the course of the optimization, hundreds
or thousands of evaluations are necessary, result-
ing in very long runtimes. Two common ap-
proaches to decrease the time needed are the
use of surrogate functions (3) and paralleliza-
tion. Since the computation time spent within the
optimization algorithm itself is several orders of
magnitude lower than the time needed for a single
simulation, it is useless to introduce parallelism
to the internal operations of the algorithm. In-
stead, the goal is to design the algorithm in a
way that allows it to utilize the results of many
simulations that can be run simultaneously and
independently of each other.

In this paper, eight such parallel direct search
methods for simulation-based optimization prob-
lems are examined. Most of them are based on
well-known sequential search methods and were
modified to exploit parallel computing resources:

• Distributed Polytope Search (4) applies ge-
ometric operations to a set of points in the
search space to generate new solutions. Infea-
sible solutions are repaired by moving them
towards the center of gravity.

• Parallel Scatter Search (5) is a parallel im-
plementation of the well-known scatter search
meta-heuristic.

• Asynchronous Parallel Pattern Search (6) is a
pattern search method with the unique prop-
erty of asynchronous parallel operation.

• Simulated Annealing (7) is a parallel vari-
ant of the classical SA method which uses a
stochastic, temperature-dependant acceptance
function to avoid getting stuck in local min-
ima.



• Great Deluge Algorithm (8) is similar to SA
but uses a different acceptance function based
on a flood level.

• Particle Swarm Optimization (9) simulates a
swarm of particles moving through the search
space and attracting each other.

• Genetic Algorithm (10), an incarnation of the
bioinspired search method for real-valued de-
cision variables.

• Evolution Strategies (11) are closely related to
GA but add the concept of so-called strategy
parameters, which enable self-adaptation of
the search strategy.

Some of the algorithms generate a sufficient
number of new solution candidates per iteration
in their original, sequential form and are thus
easily extended to make use of parallel compu-
tation. Others, like Distributed Polytope Search,
differ significantly from the algorithm they have
been derived from. Furthermore, some of the al-
gorithms can also operate in asynchronous mode,
meaning that further operation is not suspended
until all pending simulations have finished. This
is especially important in a heterogenous com-
puting environment where the runtimes of the
simulations vary significantly.

Advances in the area of service-oriented ar-
chitectures (12) and grid computing (13) make it
easier to use resources beyond geographical and
organizational boundaries, theoretically enabling
even small companies to utilize many thousands
of CPUs on demand. However, the problem of
licensing still limits the use of commercial sim-
ulation software in these environments. Thus,
while most of the observations will also apply
to large scale computing, the paper focuses on
degrees of parallelism of up to a few hundred
CPUs – typical of compute clusters or enterprise
grids.

The algorithms were used to solve several
real-world problems in different engineering dis-
ciplines. This includes sheet metal forming and
optimization of metal alloy casting processes in
the automotive industry, and facility optimiza-
tion in groundwater management. Results are
presented for both a test function as well as two
problems from industrial practice. The compu-
tational experiments were performed on a 300

CPU Linux Opteron cluster. While the test func-
tion allows for an extensive examination of the
algorithms’ performance over a wide range of
utilized CPUs and different problem dimensions,
the simulation-based optimization problems in-
dicate the relevance of the contribution to non-
academic tasks.
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