1. INTRODUCTION

The proximal-point-algorithm (PPA), originally introduced by Rockafellar (7), and the auxiliary-problem-principle (APP), which goes back to Cohen (3) are well-known solution methods for variational inequalities. In the last years, extensions of these methods have been considered e.g. by Kaplan/Tichatschke (5), Eckstein (4), Censor/Iusem/Cenios (2) and Solodov/Svaiter (8).

A proximal-auxiliary-problem (PAP) principle, introduced by Rockafellar (7), and the proximal-point-algorithm (PPA), originally introduced by Kaplan/Tichatschke (6) and a general convergence theory was developed. In an extension of this method they use Bregman distances to achieve an interior-point-effect. In our work we replace these Bregman distances by logarithmic-quadratic distance functions which also lead to an interior-point-effect but don’t have the disadvantage of requiring parmonotonicity of the operator of the considered variational inequality. As a consequence, the logarithmic-quadratic PAP (LQPAP) can be used for a broader class of variational inequality problems.

2. LQPAP-METHOD

We suppose that the operator of the given variational inequality is splitted into the sum of a maximal monotone, set-valued operator \(Q \) and a single-valued, continuous operator \(F \) and consider the problem

\[
\text{VI}(F, Q, K):
\]

find \(x^* \in K \) and \(q^*(x^*) \in Q(x^*) \):

\[
\langle F(x^*) + q^*(x^*), x - x^* \rangle \geq 0 \quad \forall \ x \in K,
\]

where \(K \) has to be a polyhedral subset of \(\mathbb{R}^n \), given by

\[
K = \{ x \in \mathbb{R}^n : Ax \leq b \}
\]}

with \(A \in \mathbb{R}^{p \times n} \), \(\text{rank}(A) = n \), \(b \in \mathbb{R}^p \) and \(\text{int}(K) \neq \emptyset \).

Our extension of the APP for solving \(\text{VI}(F, Q, K) \) can be subsumed under the following general iterative scheme:

Starting with \(x^1 \in \text{int}(K) \), at the \((k+1) \)th step we have a current iterate \(x^k \in \text{int}(K) \) and calculate \(x^{k+1} \) by solving the problem:

\[
(P_{\delta}^k):
\]

find \(x^{k+1} \in K, \ q^k(x^{k+1}) \in Q^k(x^{k+1}) ; \)

\[
\langle F(x^k) + q^k(x^{k+1}) + L^k(x^{k+1}) - L^k(x^k) + \chi_k \nabla \mathcal{I} D(x^{k+1}, x^k), x - x^{k+1} \rangle
\]

\[
\geq -\delta_k \| x - x^{k+1} \| \quad \forall \ x \in K.
\]

This scheme includes an outer approximation of the operator \(Q \) in each iteration by set-valued operators \(Q^k \) and an inexact solution of the auxiliary problems. The family of monotone and continuous operators \(\{ L^k \} \) allows different types of approximations of the operator \(F \). The term \(\chi_k \nabla \mathcal{I} D(x^{k+1}, x^k) \) is made up by a positive parameter \(\chi_k \) and the gradient (with respect to the first vector argument) of a distance function \(D \).

As a special case we get the classical inexact PPA by setting \(Q = F + Q, F = 0, Q^k = Q, \forall k, \)

\(L^k = 0, \forall k, \) and \(D(x, y) = \frac{1}{2} \| x - y \|^2. \) A general inexact APP-scheme emerges from \((P_{\delta}^k) \) by choosing \(F = F + Q, Q^k = 0, \forall k, \) and

\[
D(x, y) = h(x) - h(y) - \langle \nabla h(y), x - y \rangle \quad (1)
\]

with \(h \) continuously differentiable and \(\nabla h \) Lipschitz on \(K \). Then, \(L^k + \chi_k \nabla h \) plays the role of the auxiliary operator. Kaplan/Tichatschke showed in (5), that in scheme \((P_{\delta}^k) \) it is possible to take a distance function like in (1) but with a Bregman-function \(h \), although the gradient map of a Bregman-function is not Lipschitz.
In our PAP-method with logarithmic-quadratic distances, D is declared with the help of the following function which was first introduced by Auslender (1): For $v \in \mathbb{R}^p_{++}$ define
\[
d(u,v) := \begin{cases}
\sum_{i=1}^p u_i^2 - u_i v_i - v_i^2 \log \frac{u_i}{v_i} & \text{if } u \in \mathbb{R}^p_{++} \setminus \{0\}, \\
+\infty & \text{otherwise}.
\end{cases}
\]
$d(\cdot, v)$ is a proper, lower semi-continuous and convex function, nonnegative and can be treated as unconstrained ones, because all iterates will automatically belong to the interior of the restriction set K.

Two properties of D are important: First of all $\nabla I D(\cdot, x^k)$ is strictly monotone for all $x^k \in \text{int}(K)$. Together with a positive parameter χ_k this ensures that if the auxiliary problems (P^k_δ) are solvable they are uniquely solvable. This regularization effect enables us to deal with ill-posed problems. Second, it holds that the effective domain of $\nabla I D(\cdot, x^k)$ coincides with $\text{int}(K)$. This leads to an interior-point-effect, which means that the auxiliary problems (P^k_δ) can be treated as unconstrained ones, because all iterates will automatically belong to the interior of the restriction set K.

3. CONVERGENCE ANALYSIS

The assumptions in our convergence theorem are not stronger than those typically made for the PPA with Bregman-functions or the APP.

Apart from the already mentioned properties of the involved operators, we need that $\text{dom}(Q) \cap K$ is a nonempty and closed set and $\text{ri}(\text{dom}(Q)) \cap \text{int}(K) \neq \emptyset$. Further, the operators $F - L^k$ must fulfill a sort of Dunn-property and the family $\{L^k\}$ a continuity-property which is especially fulfilled if we have the uniformly Lipschitz continuity of the operators L^k. To approximate the operator Q one can for example choose the ϵ-enlargements Q_{ϵ_k} with $\epsilon_k \geq 0, \forall k$ and $\sum_{k=1}^{\infty} \epsilon_k < +\infty$.

The regularization parameter χ_k can vary from iteration to iteration, but has to be greater than a special positive constant. The error tolerance criterion is simply
\[
\sum_{k=0}^{\infty} \|\epsilon_{k+1}\| < +\infty
\]
which can easily be implemented.

If $VI(F, Q, K)$ is solvable we can prove convergence of the iterates $\{x^k\}$ generated by the LQPAP-method towards a solution.

4. CONCLUSIONS

We considered a general iteration scheme for solving variational inequalities, which can be viewed as an extension of the auxiliary-problem-principle. As regularization term we use a logarithmic-quadratic function that leads to an interior-point-effect. In contrast to the usage of Bregman distances we don’t have to require paramonotonicity of the operator of the variational inequality which opens our algorithm to a wider class of problems.

REFERENCES

