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1. Biological background

For a eukaryotic virus to successfully infect and

propagate in cultured cells several events must

occur: The virion must identify and bind its cel-

lular receptor, become internalised, uncoat, syn-

thesize viral proteins, replicate its genome, as-

semble progeny virions, and exit the host cell.

The virions bud off from the cell, gaining an en-

velope from the cell membrane as they exit. The

new viral particle infects another cell to repeat

the cycle. Usually, during the repeated process

of self-replication, the virus destroys host’s cells.

While these events are taking place, intrinsic

host defenses activate in order to defeat the virus.

The first-line defense against viruses is based on

innate immunity. This includes, among others,

activation of the interferon system, induction of

apoptosis, and attempted elicitation of immune

responses via chemokine and cytokine produc-

tion. Interferons are a family of active biochem-

ical species, which help to fight viral infections

by spreading from infected to uninfected cells

and triggering production of effector molecules.

The interferons interact with receptors located on

the membrane of uninfected cells, which leads to

the activation of the reactions cascade in the un-

infected cells and production of some proteins.

These latter when activated confer on cells resis-

tance from the virus (Rose et al. 2001).

To get a better insight into the dynamics of the

processes described above we developed a math-

ematical model of dynamics of viral infection in

vitro, including infection, cell death, production

of interferon and development of resistance. The

dynamics of the model can be understood as a

combat between the invading virus particles and

the ability of the immune system to react to the

invasion by producing substances conferring re-

sistance to virus. We concentrate on the case,

in which the supply of unexposed cells ceases

at the moment of infection. This corresponds to

conditions prevalent in cell culture experiments.

The model is motivated by experi-

ments involving vesicular stomatitis virus,

(Lam et al. 2005; Rose et al. 2001), and res-

piratory syncytial virus (Rose et al. 2001)

including unpublished experimental results

performed in Dr. Allan Brasier’s laboratory

of the University of Texas Medical Branch in

Galvestone.

2. Mathematical models

We consider a model for the dynamics of viral in-

fection, which involves wild-type, i.e., unexposed

to virus (W ), infected (I) and resistant (R) cells,

as well as particles of virus (v) outside cells,

and molecules of interferon (i), the substance re-

leased by infected cells, which boosts the resis-

tance of wild-type cells. The model consists of

five ordinary differential equations for variables

W , I , R, i and v, each being a function of time,

W ′ = −α1vW − α2iW,

I ′ = −µII + α1vW,

R′ = α2iW,

i′ = −µii + αiI − α3iW,

v′ = −µvv + αvI − α4vW,

with initial conditions

(W, I,R, i, v)(0) = (W0, I0, R0, i0, v0),



To understand influence of the intracellular repli-

cation process on the observable spread of in-

fection, we differentiate among the intracellular

stages of infection for infected cells using an ad-

ditional variable describing the age of infection.

Infected cells of different age produce interferon

at different rates and release virions at different

rates. Mathematically, this variant requires an

additional transport-type partial differential equa-

tion to model the infection-age structure in in-

fected cells,

∂I(t, a)

∂t
+

∂I(t, a)

∂a
= −µI(a)I(t, a), a > 0

I(t, 0) = v(t)W (t), t ≥ 0

However, the transport process can be reduced

to distributed delay terms in two of the model

equations. Therefore, the model with structure

can be analysed using local linearised stability

results for the functional (delay) type differential

equation system (Diekmann et al. 1995).

3. Results

The methods we used to analyse our models in-

volve both global and local methods. As it hap-

pens, a conservation law can be derived for the

model without structure, application of which

guarantees that the solutions of the model con-

verge to limit values as t → ∞. The same con-

servation law allows to conclude that unexpect-

edly, in the case with virus mortality, there is

always a residual population of wild-type cells.

When the virus mortality rate is equal to zero,

this is not necessarily the case.

The conservation law can be extended to the

structured case, under some additional hypothe-

ses concerning supports of age-dependent mor-

tality and infectivities. This law is mathemati-

cally interesting, since it is not a complete law

as frequently used in the epidemics theory, how-

ever together with nonnegativity, it provides up-

per bounds, which sufficiently constrain the so-

lutions.

Let us notice that the system, both in the un-

structured and structured versions, is somewhat

unusual in that it does not have unique equilib-

rium points. The limits to which the system is

converging strongly depend on initial conditions.

This property has an impact on the linearised

stability. Attracting properties are limited to the

subspace spanned by eigenvectors corresponding

to nonzero eigenvalues, while the solution slides

along the complementary subspace. In the case

of the structured model, considerations of lin-

earised stability can be done using a extension

of the Mikhailov criterion.

Conditions of stability, which we obtained,

seem to have interesting biological interpreta-

tions. First of all, the structure can have a sta-

bilising (respectively, destabilising) effect even if

the expected lifetime virus production of an in-

fected cell is higher (respectively, lower) in the

structured model than in the unstructured model.

Also, delaying and shortening the time of new

virus synthesis lead to a stabilising effect of

structure. These results illustrate the importance

of the dynamics of the process of virus prolif-

eration and death of the infected cells. In the

ODE system, duration of these processes can be

understood as being described by exponentially

distributed random variables. Our results indi-

cate that this is not always sufficient and illustrate

the need to understand these processes.

One of the important elements of the model

is the presence of a mechanism of interferon-

induced virus resistance. Interferon can be pro-

duced only by infected cells and confers resis-

tance (in our model a complete resistance) on

wild-type cells. It is interesting that setting the

interferon production rate to zero does not qual-

itatively change the behaviour of the system.

However, it reduces the total number of wild-

type and resistant cells.
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